Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genome-Wide Association Mapping of Resistance to Septoria Nodorum Leaf Blotch in a Nordic Spring Wheat Collection.

Identifieur interne : 000249 ( Main/Exploration ); précédent : 000248

Genome-Wide Association Mapping of Resistance to Septoria Nodorum Leaf Blotch in a Nordic Spring Wheat Collection.

Auteurs : Anja Karine Ruud [Norvège, Danemark] ; Jon Arne Dieseth [Norvège] ; Andrea Ficke [Norvège] ; Eiko Furuki [Australie] ; Huyen T T. Phan [Australie] ; Richard P. Oliver [Australie] ; Kar-Chun Tan [Australie] ; Morten Lillemo [Norvège]

Source :

RBID : pubmed:33016591

Descripteurs français

English descriptors

Abstract

CORE IDEAS

First genome-wide association mapping of adult plant Septoria nodorum blotch resistance. Some adult plant resistance loci were shared with seedling resistance loci. Other adult plant resistance loci were significant across environments. Resistant haplotypes were identified, which can be used for breeding. Parastagonospora nodorum is the causal agent of Septoria nodorum leaf blotch (SNB) in wheat (Triticum aestivum L.). It is the most important leaf blotch pathogen in Norwegian spring wheat. Several quantitative trait loci (QTL) for SNB susceptibility have been identified. Some of these QTL are the result of underlying gene-for-gene interactions involving necrotrophic effectors (NEs) and corresponding sensitivity (Snn) genes. A collection of diverse spring wheat lines was evaluated for SNB resistance and susceptibility over seven growing seasons in the field. In addition, wheat seedlings were inoculated and infiltrated with culture filtrates (CFs) from four single spore isolates and infiltrated with semipurified NEs (SnToxA, SnTox1, and SnTox3) under greenhouse conditions. In adult plants, the most stable SNB resistance QTL were located on chromosomes 2B, 2D, 4A, 4B, 5A, 6B, 7A, and 7B. The QTL on chromosome 2D was effective most years in the field. At the seedling stage, the most significant QTL after inoculation were located on chromosomes 1A, 1B, 3A, 4B, 5B, 6B, 7A, and 7B. The QTL on chromosomes 3A and 6B were significant both after inoculation and CF infiltration, indicating the presence of novel NE-Snn interactions. The QTL on chromosomes 4B and 7A were significant in both seedlings and adult plants. Correlations between SnToxA sensitivity and disease severity in the field were significant. To our knowledge, this is the first genome-wide association mapping study (GWAS) to investigate SNB resistance at the adult plant stage under field conditions.


DOI: 10.3835/plantgenome2018.12.0105
PubMed: 33016591


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genome-Wide Association Mapping of Resistance to Septoria Nodorum Leaf Blotch in a Nordic Spring Wheat Collection.</title>
<author>
<name sortKey="Ruud, Anja Karine" sort="Ruud, Anja Karine" uniqKey="Ruud A" first="Anja Karine" last="Ruud">Anja Karine Ruud</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dep. of Plant Sciences, Norwegian Univ. of Life Sciences, Post Box 5003, NO-1432, ÅS, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Dep. of Plant Sciences, Norwegian Univ. of Life Sciences, Post Box 5003, NO-1432, ÅS</wicri:regionArea>
<wicri:noRegion>ÅS</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Science and Technology, Dep. of Molecular Biology and Genetics, Aarhus Univ, 4200, Slagelse, Denmark.</nlm:affiliation>
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Faculty of Science and Technology, Dep. of Molecular Biology and Genetics, Aarhus Univ, 4200, Slagelse</wicri:regionArea>
<wicri:noRegion>Slagelse</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dieseth, Jon Arne" sort="Dieseth, Jon Arne" uniqKey="Dieseth J" first="Jon Arne" last="Dieseth">Jon Arne Dieseth</name>
<affiliation wicri:level="1">
<nlm:affiliation>Graminor, AS, Bjørke Gård, Hommelstadvegen 60, NO-2322, Ridabu, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Graminor, AS, Bjørke Gård, Hommelstadvegen 60, NO-2322, Ridabu</wicri:regionArea>
<wicri:noRegion>Ridabu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ficke, Andrea" sort="Ficke, Andrea" uniqKey="Ficke A" first="Andrea" last="Ficke">Andrea Ficke</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Biotechnology and Plant Health, Norwegian Inst. of Bioeconomy Research, P.O. Box 115, NO-1431, ÅS, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Division of Biotechnology and Plant Health, Norwegian Inst. of Bioeconomy Research, P.O. Box 115, NO-1431, ÅS</wicri:regionArea>
<wicri:noRegion>ÅS</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Furuki, Eiko" sort="Furuki, Eiko" uniqKey="Furuki E" first="Eiko" last="Furuki">Eiko Furuki</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Crop and Disease Management, Dep. of Environment & Agriculture, Curtin Univ., Bentley, Western Australia, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Crop and Disease Management, Dep. of Environment & Agriculture, Curtin Univ., Bentley, Western Australia</wicri:regionArea>
<wicri:noRegion>Western Australia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Phan, Huyen T T" sort="Phan, Huyen T T" uniqKey="Phan H" first="Huyen T T" last="Phan">Huyen T T. Phan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Crop and Disease Management, Dep. of Environment & Agriculture, Curtin Univ., Bentley, Western Australia, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Crop and Disease Management, Dep. of Environment & Agriculture, Curtin Univ., Bentley, Western Australia</wicri:regionArea>
<wicri:noRegion>Western Australia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Oliver, Richard P" sort="Oliver, Richard P" uniqKey="Oliver R" first="Richard P" last="Oliver">Richard P. Oliver</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Crop and Disease Management, Dep. of Environment & Agriculture, Curtin Univ., Bentley, Western Australia, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Crop and Disease Management, Dep. of Environment & Agriculture, Curtin Univ., Bentley, Western Australia</wicri:regionArea>
<wicri:noRegion>Western Australia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tan, Kar Chun" sort="Tan, Kar Chun" uniqKey="Tan K" first="Kar-Chun" last="Tan">Kar-Chun Tan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Crop and Disease Management, Dep. of Environment & Agriculture, Curtin Univ., Bentley, Western Australia, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Crop and Disease Management, Dep. of Environment & Agriculture, Curtin Univ., Bentley, Western Australia</wicri:regionArea>
<wicri:noRegion>Western Australia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lillemo, Morten" sort="Lillemo, Morten" uniqKey="Lillemo M" first="Morten" last="Lillemo">Morten Lillemo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dep. of Plant Sciences, Norwegian Univ. of Life Sciences, Post Box 5003, NO-1432, ÅS, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Dep. of Plant Sciences, Norwegian Univ. of Life Sciences, Post Box 5003, NO-1432, ÅS</wicri:regionArea>
<wicri:noRegion>ÅS</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:33016591</idno>
<idno type="pmid">33016591</idno>
<idno type="doi">10.3835/plantgenome2018.12.0105</idno>
<idno type="wicri:Area/Main/Corpus">000078</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000078</idno>
<idno type="wicri:Area/Main/Curation">000078</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000078</idno>
<idno type="wicri:Area/Main/Exploration">000078</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genome-Wide Association Mapping of Resistance to Septoria Nodorum Leaf Blotch in a Nordic Spring Wheat Collection.</title>
<author>
<name sortKey="Ruud, Anja Karine" sort="Ruud, Anja Karine" uniqKey="Ruud A" first="Anja Karine" last="Ruud">Anja Karine Ruud</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dep. of Plant Sciences, Norwegian Univ. of Life Sciences, Post Box 5003, NO-1432, ÅS, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Dep. of Plant Sciences, Norwegian Univ. of Life Sciences, Post Box 5003, NO-1432, ÅS</wicri:regionArea>
<wicri:noRegion>ÅS</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Science and Technology, Dep. of Molecular Biology and Genetics, Aarhus Univ, 4200, Slagelse, Denmark.</nlm:affiliation>
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Faculty of Science and Technology, Dep. of Molecular Biology and Genetics, Aarhus Univ, 4200, Slagelse</wicri:regionArea>
<wicri:noRegion>Slagelse</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dieseth, Jon Arne" sort="Dieseth, Jon Arne" uniqKey="Dieseth J" first="Jon Arne" last="Dieseth">Jon Arne Dieseth</name>
<affiliation wicri:level="1">
<nlm:affiliation>Graminor, AS, Bjørke Gård, Hommelstadvegen 60, NO-2322, Ridabu, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Graminor, AS, Bjørke Gård, Hommelstadvegen 60, NO-2322, Ridabu</wicri:regionArea>
<wicri:noRegion>Ridabu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ficke, Andrea" sort="Ficke, Andrea" uniqKey="Ficke A" first="Andrea" last="Ficke">Andrea Ficke</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Biotechnology and Plant Health, Norwegian Inst. of Bioeconomy Research, P.O. Box 115, NO-1431, ÅS, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Division of Biotechnology and Plant Health, Norwegian Inst. of Bioeconomy Research, P.O. Box 115, NO-1431, ÅS</wicri:regionArea>
<wicri:noRegion>ÅS</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Furuki, Eiko" sort="Furuki, Eiko" uniqKey="Furuki E" first="Eiko" last="Furuki">Eiko Furuki</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Crop and Disease Management, Dep. of Environment & Agriculture, Curtin Univ., Bentley, Western Australia, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Crop and Disease Management, Dep. of Environment & Agriculture, Curtin Univ., Bentley, Western Australia</wicri:regionArea>
<wicri:noRegion>Western Australia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Phan, Huyen T T" sort="Phan, Huyen T T" uniqKey="Phan H" first="Huyen T T" last="Phan">Huyen T T. Phan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Crop and Disease Management, Dep. of Environment & Agriculture, Curtin Univ., Bentley, Western Australia, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Crop and Disease Management, Dep. of Environment & Agriculture, Curtin Univ., Bentley, Western Australia</wicri:regionArea>
<wicri:noRegion>Western Australia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Oliver, Richard P" sort="Oliver, Richard P" uniqKey="Oliver R" first="Richard P" last="Oliver">Richard P. Oliver</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Crop and Disease Management, Dep. of Environment & Agriculture, Curtin Univ., Bentley, Western Australia, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Crop and Disease Management, Dep. of Environment & Agriculture, Curtin Univ., Bentley, Western Australia</wicri:regionArea>
<wicri:noRegion>Western Australia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tan, Kar Chun" sort="Tan, Kar Chun" uniqKey="Tan K" first="Kar-Chun" last="Tan">Kar-Chun Tan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Crop and Disease Management, Dep. of Environment & Agriculture, Curtin Univ., Bentley, Western Australia, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Crop and Disease Management, Dep. of Environment & Agriculture, Curtin Univ., Bentley, Western Australia</wicri:regionArea>
<wicri:noRegion>Western Australia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lillemo, Morten" sort="Lillemo, Morten" uniqKey="Lillemo M" first="Morten" last="Lillemo">Morten Lillemo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dep. of Plant Sciences, Norwegian Univ. of Life Sciences, Post Box 5003, NO-1432, ÅS, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Dep. of Plant Sciences, Norwegian Univ. of Life Sciences, Post Box 5003, NO-1432, ÅS</wicri:regionArea>
<wicri:noRegion>ÅS</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The plant genome</title>
<idno type="eISSN">1940-3372</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Genome-Wide Association Study (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Plant Diseases (genetics)</term>
<term>Seasons (MeSH)</term>
<term>Triticum (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Maladies des plantes (génétique)</term>
<term>Phénotype (MeSH)</term>
<term>Saisons (MeSH)</term>
<term>Triticum (génétique)</term>
<term>Étude d'association pangénomique (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Diseases</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genome-Wide Association Study</term>
<term>Phenotype</term>
<term>Seasons</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Phénotype</term>
<term>Saisons</term>
<term>Étude d'association pangénomique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>CORE IDEAS</b>
</p>
<p>First genome-wide association mapping of adult plant Septoria nodorum blotch resistance. Some adult plant resistance loci were shared with seedling resistance loci. Other adult plant resistance loci were significant across environments. Resistant haplotypes were identified, which can be used for breeding. Parastagonospora nodorum is the causal agent of Septoria nodorum leaf blotch (SNB) in wheat (Triticum aestivum L.). It is the most important leaf blotch pathogen in Norwegian spring wheat. Several quantitative trait loci (QTL) for SNB susceptibility have been identified. Some of these QTL are the result of underlying gene-for-gene interactions involving necrotrophic effectors (NEs) and corresponding sensitivity (Snn) genes. A collection of diverse spring wheat lines was evaluated for SNB resistance and susceptibility over seven growing seasons in the field. In addition, wheat seedlings were inoculated and infiltrated with culture filtrates (CFs) from four single spore isolates and infiltrated with semipurified NEs (SnToxA, SnTox1, and SnTox3) under greenhouse conditions. In adult plants, the most stable SNB resistance QTL were located on chromosomes 2B, 2D, 4A, 4B, 5A, 6B, 7A, and 7B. The QTL on chromosome 2D was effective most years in the field. At the seedling stage, the most significant QTL after inoculation were located on chromosomes 1A, 1B, 3A, 4B, 5B, 6B, 7A, and 7B. The QTL on chromosomes 3A and 6B were significant both after inoculation and CF infiltration, indicating the presence of novel NE-Snn interactions. The QTL on chromosomes 4B and 7A were significant in both seedlings and adult plants. Correlations between SnToxA sensitivity and disease severity in the field were significant. To our knowledge, this is the first genome-wide association mapping study (GWAS) to investigate SNB resistance at the adult plant stage under field conditions.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">33016591</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>10</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1940-3372</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2019</Year>
<Month>11</Month>
</PubDate>
</JournalIssue>
<Title>The plant genome</Title>
<ISOAbbreviation>Plant Genome</ISOAbbreviation>
</Journal>
<ArticleTitle>Genome-Wide Association Mapping of Resistance to Septoria Nodorum Leaf Blotch in a Nordic Spring Wheat Collection.</ArticleTitle>
<Pagination>
<MedlinePgn>1-15</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3835/plantgenome2018.12.0105</ELocationID>
<Abstract>
<AbstractText Label="CORE IDEAS">First genome-wide association mapping of adult plant Septoria nodorum blotch resistance. Some adult plant resistance loci were shared with seedling resistance loci. Other adult plant resistance loci were significant across environments. Resistant haplotypes were identified, which can be used for breeding. Parastagonospora nodorum is the causal agent of Septoria nodorum leaf blotch (SNB) in wheat (Triticum aestivum L.). It is the most important leaf blotch pathogen in Norwegian spring wheat. Several quantitative trait loci (QTL) for SNB susceptibility have been identified. Some of these QTL are the result of underlying gene-for-gene interactions involving necrotrophic effectors (NEs) and corresponding sensitivity (Snn) genes. A collection of diverse spring wheat lines was evaluated for SNB resistance and susceptibility over seven growing seasons in the field. In addition, wheat seedlings were inoculated and infiltrated with culture filtrates (CFs) from four single spore isolates and infiltrated with semipurified NEs (SnToxA, SnTox1, and SnTox3) under greenhouse conditions. In adult plants, the most stable SNB resistance QTL were located on chromosomes 2B, 2D, 4A, 4B, 5A, 6B, 7A, and 7B. The QTL on chromosome 2D was effective most years in the field. At the seedling stage, the most significant QTL after inoculation were located on chromosomes 1A, 1B, 3A, 4B, 5B, 6B, 7A, and 7B. The QTL on chromosomes 3A and 6B were significant both after inoculation and CF infiltration, indicating the presence of novel NE-Snn interactions. The QTL on chromosomes 4B and 7A were significant in both seedlings and adult plants. Correlations between SnToxA sensitivity and disease severity in the field were significant. To our knowledge, this is the first genome-wide association mapping study (GWAS) to investigate SNB resistance at the adult plant stage under field conditions.</AbstractText>
<CopyrightInformation>© 2019 The Author(s).</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ruud</LastName>
<ForeName>Anja Karine</ForeName>
<Initials>AK</Initials>
<AffiliationInfo>
<Affiliation>Dep. of Plant Sciences, Norwegian Univ. of Life Sciences, Post Box 5003, NO-1432, ÅS, Norway.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Faculty of Science and Technology, Dep. of Molecular Biology and Genetics, Aarhus Univ, 4200, Slagelse, Denmark.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dieseth</LastName>
<ForeName>Jon Arne</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Graminor, AS, Bjørke Gård, Hommelstadvegen 60, NO-2322, Ridabu, Norway.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ficke</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Division of Biotechnology and Plant Health, Norwegian Inst. of Bioeconomy Research, P.O. Box 115, NO-1431, ÅS, Norway.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Furuki</LastName>
<ForeName>Eiko</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Centre for Crop and Disease Management, Dep. of Environment & Agriculture, Curtin Univ., Bentley, Western Australia, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Phan</LastName>
<ForeName>Huyen T T</ForeName>
<Initials>HTT</Initials>
<AffiliationInfo>
<Affiliation>Centre for Crop and Disease Management, Dep. of Environment & Agriculture, Curtin Univ., Bentley, Western Australia, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Oliver</LastName>
<ForeName>Richard P</ForeName>
<Initials>RP</Initials>
<AffiliationInfo>
<Affiliation>Centre for Crop and Disease Management, Dep. of Environment & Agriculture, Curtin Univ., Bentley, Western Australia, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tan</LastName>
<ForeName>Kar-Chun</ForeName>
<Initials>KC</Initials>
<AffiliationInfo>
<Affiliation>Centre for Crop and Disease Management, Dep. of Environment & Agriculture, Curtin Univ., Bentley, Western Australia, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lillemo</LastName>
<ForeName>Morten</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Dep. of Plant Sciences, Norwegian Univ. of Life Sciences, Post Box 5003, NO-1432, ÅS, Norway.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Genome</MedlineTA>
<NlmUniqueID>101273919</NlmUniqueID>
<ISSNLinking>1940-3372</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D055106" MajorTopicYN="Y">Genome-Wide Association Study</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012621" MajorTopicYN="N">Seasons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014908" MajorTopicYN="N">Triticum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>12</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>05</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>10</Month>
<Day>5</Day>
<Hour>8</Hour>
<Minute>44</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33016591</ArticleId>
<ArticleId IdType="doi">10.3835/plantgenome2018.12.0105</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Abeysekara, N.S., Friesen, T.L., Keller, B., Faris, J.D.. 2009. Identification and characterization of a novel host-toxin interaction in the wheat-Stagonospora nodorum pathosystem. Theor. Appl. Genet. 120:117-126. doi:10.1007/s00122-009-1163-6</Citation>
</Reference>
<Reference>
<Citation>Abrahamsen, U. 2013. Spring wheat cultivars and fungicide resistance. In: Strand, E. , editor, Jord- og plantekultur 2013/Bioforsk FOKUS 8. (In Norwegian.) Bioforsk, Ås, Norway. p. 124-129.</Citation>
</Reference>
<Reference>
<Citation>Adhikari, T.B., Jackson, E.W., Gurung, S., Hansen, J.M., Bonman, J.M.. 2011. Association mapping of quantitative resistance to Phaeosphaeria nodorum in spring wheat landraces from the USDA National Small Grains Collection. Phytopathology 101:1301-1310. doi:10.1094/PHYTO-03-11-0076</Citation>
</Reference>
<Reference>
<Citation>Aguilar, V., Stamp, P., Winzeler, M., Winzeler, H., Schachermayr, G., Keller, B. 2005. Inheritance of field resistance to Stagonospora nodorum leaf and glume blotch and correlations with other morphological traits in hexaploid wheat (Triticum aestivum L.). Theor. Appl. Genet. 111:325-336. doi:10.1007/s00122-005-2025-5</Citation>
</Reference>
<Reference>
<Citation>Arseniuk, E., Czembor, P.C., Czaplicki, A., Song, Q.J., Cregan, P.B., Hoffman, D.L. 2004. QTL controlling partial resistance to Stagonospora nodorum leaf blotch in winter wheat cultivar Alba. Euphytica 137:225-231. doi:10.1023/B:EUPH.0000041589.47544.de</Citation>
</Reference>
<Reference>
<Citation>Blixt, E., Djurle, A., Yuen, J., Olson, Å.. 2009. Fungicide sensitivity in Swedish isolates of Phaeosphaeria nodorum. Plant Pathol. 58:655-664. doi:10.1111/j.1365-3059.2009.02041.x</Citation>
</Reference>
<Reference>
<Citation>Bostwick, D.E., Ohm, H.W., Shaner, G.. 1993. Inheritance of Septoria nodorum glume blotch resistance in wheat. Crop Sci. 33:439-443. doi:10.2135/cropsci1993.0011183X003300030005x</Citation>
</Reference>
<Reference>
<Citation>Bradbury, P.J., Zhang, Z., Kroon, D.E., Casstevens, T.M., Ramdos, Y., Buckler, E.S.. 2007. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633-2635. doi:10.1093/bioinformatics/btm308</Citation>
</Reference>
<Reference>
<Citation>Breseghello, F., Sorrells, M.E.. 2006. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165-1177. doi:10.1534/genetics.105.044586</Citation>
</Reference>
<Reference>
<Citation>Ciuffetti, L.M., Manning, V.A., Pandelova, I., Betts, M.F., Martinez, J.P.. 2010. Host-selective toxins, Ptr ToxA and Ptr ToxB, as necrotrophic effectors in the Pyrenophora tritici-repentis-wheat interaction. New Phytol. 187:911-919. doi:10.1111/j.1469-8137.2010.03362.x</Citation>
</Reference>
<Reference>
<Citation>Clement, M., Posada, D., Crandall, K.A.. 2000. TCS: A computer program to estimate gene genealogies. Mol. Ecol. 9:1657-1659. doi:10.1046/j.1365-294x.2000.01020.x</Citation>
</Reference>
<Reference>
<Citation>Crossa, J., Burgueño, J., Dreisigacker, S., Vargas, M., Herrera-Foessel, S.A., Lillemo, M. 2007. Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889-1913. doi:10.1534/genetics.107.078659</Citation>
</Reference>
<Reference>
<Citation>Czembor, P.C., Arseniuk, E., Czaplicki, A., Song, Q., Cregan, P.B., Ueng, P.P.. 2003. QTL mapping of partial resistance in winter wheat to Stagonospora nodorum blotch. Genome 46:546-554. doi:10.1139/g03-036</Citation>
</Reference>
<Reference>
<Citation>Dinglasan, E.G., Singh, D., Shankar, M., Afanasenko, O., Platz, G., Godwin, I.D. 2019. Discovering new alleles for yellow spot resistance in the Vavilov wheat collection. Theor. Appl. Genet. 132:149-162. doi:10.1007/s00122-018-3204-5</Citation>
</Reference>
<Reference>
<Citation>Downie, R.C., Bouvet, L., Furuki, E., Gosman, N., Gardner, K.A., Mackay, I.J. 2018. Assessing European wheat sensitivities to Parastagonospora nodorum necrotrophic effectors and fine-mapping the Snn3-B1 locus conferring sensitivity to the effector SnTox3. Front. Plant Sci. 9. doi:10.3389/fpls.2018.00881</Citation>
</Reference>
<Reference>
<Citation>Faris, J.D., Zhang, Z.C., Lu, H.J., Lu, S.W., Reddy, L., Cloutier, S. 2010. A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc. Natl. Acad. Sci. USA 107:13544-13549. doi:10.1073/pnas.1004090107</Citation>
</Reference>
<Reference>
<Citation>Ficke, A., Abrahamsen, U., Elen, O.. 2011a. Fungicide resistance in diseases on cereals in Norway. (in Norwegian) Bioforsk Fokus 6:96.</Citation>
</Reference>
<Reference>
<Citation>Ficke, A., Abrahamsen, U., Elen, O.. 2011b. Importance of the leaf blotch disease complex in Norwegian wheat. (in Norwegian) Bioforsk Fokus 6:64-67.</Citation>
</Reference>
<Reference>
<Citation>Flint-Garcia, S.A., Thornsberry, J.M., Buckler, E.S.. 2003. Structure of linkage disequilibrium in plants. Annu. Rev. Plant Biol. 54:357-374. doi:10.1146/annurev.arplant.54.031902.134907</Citation>
</Reference>
<Reference>
<Citation>Francki, M.G. 2013. Improving Stagonospora nodorum resistance in wheat: A review. Crop Sci. 53:355-365. doi:10.2135/cropsci2012.06.0347</Citation>
</Reference>
<Reference>
<Citation>Francki, M.G., Shankar, M., Walker, E., Loughman, R., Golzar, H., Ohm, H.. 2011. New quantitative trait loci in wheat for flag leaf resistance to Stagonospora nodorum blotch. Phytopathology 101:1278-1284. doi:10.1094/PHYTO-02-11-0054</Citation>
</Reference>
<Reference>
<Citation>Fried, P.M., Meister, E.. 1987. Inheritance of leaf and head resistance of winter wheat to Septoria nodorum in a diallel cross. Phytopathology 77:1371-1375. doi:10.1094/Phyto-77-1371</Citation>
</Reference>
<Reference>
<Citation>Friesen, T.L., Chu, C., Xu, S.S., Faris, J.D.. 2012. SnTox5-Snn5: a novel Stagonospora nodorum effector-wheat gene interaction and its relationship with the SnToxA-Tsn1 and SnTox3-Snn3-B1 interactions. Mol. Plant Pathol. 13:1101-1109. doi:10.1111/j.1364-3703.2012.00819.x</Citation>
</Reference>
<Reference>
<Citation>Friesen, T.L., Chu, C.G., Liu, Z.H., Xu, S.S., Halley, S., Faris, J.D.. 2009. Host-selective toxins produced by Stagonospora nodorum confer disease susceptibility in adult wheat plants under field conditions. Theor. Appl. Genet. 118:1489-1497. doi:10.1007/s00122-009-0997-2</Citation>
</Reference>
<Reference>
<Citation>Friesen, T.L., Faris, J.D.. 2012. Characterization of plant-fungal interactions involving necrotrophic effector-producing plant pathogens. Methods Mol. Biol. 835:191-207. doi:10.1007/978-1-61779-501-5_12</Citation>
</Reference>
<Reference>
<Citation>Friesen, T.L., Meinhardt, S.W., Faris, J.D.. 2007. The Stagonospora nodorum-wheat pathosystem involves multiple proteinaceous host-selective toxins and corresponding host sensitivity genes that interact in an inverse gene-for-gene manner. Plant J. 51:681-692. doi:10.1111/j.1365-313X.2007.03166.x</Citation>
</Reference>
<Reference>
<Citation>Friesen, T.L., Stukenbrock, E.H., Liu, Z.H., Meinhardt, S., Ling, H., Faris, J.D. 2006. Emergence of a new disease as a result of interspecific virulence gene transfer. Nat. Genet. 38:953-956. doi:10.1038/ng1839</Citation>
</Reference>
<Reference>
<Citation>Friesen, T.L., Zhang, Z., Solomon, P.S., Oliver, R.P., Faris, J.D.. 2008. Characterization of the interaction of a novel Stagonospora nodorum host-selective toxin with a wheat susceptibility gene. Plant Physiol. 146:682-693. doi:10.1104/pp.107.108761</Citation>
</Reference>
<Reference>
<Citation>Gao, Y., Faris, J.D., Liu, Z., Kim, Y.M., Syme, R.A., Oliver, R.P. 2015. Identification and characterization of the SnTox6-Snn6 interaction in the Parastagonospora nodorum-wheat pathosystem. Mol. Plant Microbe Interact. 28:615-625. doi:10.1094/MPMI-12-14-0396-R</Citation>
</Reference>
<Reference>
<Citation>Ghavami, F., Elias, E.M., Mamidi, S., Ansari, O., Sargolzaei, M., Adhikari, T. 2011. Mixed model association mapping for Fusarium head blight resistance in Tunisian-derived durum wheat populations. G3: Genes, Genomes, Genet. 1: 209-218. doi:10.1534/g3.111.000489</Citation>
</Reference>
<Reference>
<Citation>Gonzalez-Hernandez, J.L., Singh, P.K., Mergoum, M., Adhikari, T.B., Kianian, S.F., Simsek, S. 2009. A quantitative trait locus on chromosome 5B controls resistance of Triticum turgidum (L.) var. diccocoides to Stagonospora nodorum blotch. Euphytica 166:199-206. doi:10.1007/s10681-008-9825-z</Citation>
</Reference>
<Reference>
<Citation>Gupta, P.K., Kulwal, P.L., Jaiswal, V.. 2014. Association mapping in crop plants: Opportunities and challenges. Adv. Genet. 85:109-147. doi:10.1016/B978-0-12-800271-1.00002-0</Citation>
</Reference>
<Reference>
<Citation>Gurung, S., Mamidi, S., Bonman, J.M., Xiong, M., Brown-Guedira, G., Adhikari, T.B.. 2014. Genome-wide association study reveals novel quantitative trait loci associated with resistance to multiple leaf spot diseases of spring wheat. PLoS One 9:e108179. doi:10.1371/journal.pone.0108179</Citation>
</Reference>
<Reference>
<Citation>Hill, W.G., Weir, B.S.. 1988. Variances and covariances of squared linkage disequilibria in finite populations. Theor. Popul. Biol. 33:54-78. doi:10.1016/0040-5809(88)90004-4</Citation>
</Reference>
<Reference>
<Citation>Jansen, S.C.K. 2014. Genome-wide association mapping of Fusarium head blight resistance in Norwegian spring and winter wheat lines. M.S. thesis. Norwegian University of Life Sciences, Brage, Norway.</Citation>
</Reference>
<Reference>
<Citation>Jönsson, J. 1985. Evaluation of leaf resistance to Septoria nodorum in winter wheat at seedling and adult plant stage. Agri hortique genetica 43:52-68.</Citation>
</Reference>
<Reference>
<Citation>Leigh, J.W., Bryant, D.. 2015. popart: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6:1110-1116. doi:10.1111/2041-210X.12410</Citation>
</Reference>
<Reference>
<Citation>Li, C., Bai, G., Chao, S., Wang, Z.. 2015. A high-density SNP and SSR consensus map reveals segregation distortion regions in wheat. BioMed Res. Int. 2015:830618. doi:10.1155/2015/830618</Citation>
</Reference>
<Reference>
<Citation>Liu, Z., El-Basyoni, I., Kariyawasam, G., Zhang, G., Fritz, A., Hansen, J. 2015. Evaluation and association mapping of resistance to tan spot and Stagonospora nodorum blotch in adapted winter wheat germplasm. Plant Dis. 99:1333-1341. doi:10.1094/PDIS-11-14-1131-RE</Citation>
</Reference>
<Reference>
<Citation>Liu, Z.H., Faris, J.D., Meinhardt, S.W., Ali, S., Rasmussen, J.B., Friesen, T.L.. 2004. Genetic and physical mapping of a gene conditioning sensitivity in wheat to a partially purified host-selective toxin produced by Stagonospora nodorum. Phytopathology 94:1056-1060. doi:10.1094/PHYTO.2004.94.10.1056</Citation>
</Reference>
<Reference>
<Citation>Liu, Z.H., Faris, J.D., Oliver, R.P., Tan, K.C., Solomon, P.S., McDonald, M.C. 2009. SnTox3 acts in effector triggered susceptibility to induce disease on wheat carrying the Snn3 gene. PLoS Pathog. 5:e1000581. doi:10.1371/journal.ppat.1000581</Citation>
</Reference>
<Reference>
<Citation>Liu, Z., Friesen, T.L., Ling, H., Meinhardt, S.W., Oliver, R.P., Rasmussen, J.B. 2006. The Tsn1-ToxA interaction in the wheat-Stagonospora nodorum pathosystem parallels that of the wheat-tan spot system. Genome 49:1265-1273. doi:10.1139/g06-088</Citation>
</Reference>
<Reference>
<Citation>Liu, Z.H., Friesen, T.L., Rasmussen, J.B., Ali, S., Meinhardt, S.W., Faris, J.D.. 2004. Quantitative trait loci analysis and mapping of seedling resistance to Stagonospora nodorum leaf blotch in wheat. Phytopathology 94:1061-1067. doi:10.1094/PHYTO.2004.94.10.1061</Citation>
</Reference>
<Reference>
<Citation>Liu, Z.H., Zhang, Z.C., Faris, J.D., Oliver, R.P., Syme, R., McDonald, M.C. 2012. The cysteine rich necrotrophic effector SnTox1 produced by Stagonospora nodorum triggers susceptibility of wheat lines harboring Snn1. PLoS Pathog. 8:e1002467. doi:10.1371/journal.ppat.1002467</Citation>
</Reference>
<Reference>
<Citation>Lu, Q., Lillemo, M.. 2014. Molecular mapping of adult plant resistance to Parastagonospora nodorum leaf blotch in bread wheat lines ‘Shanghai-3/Catbird’ and ‘Naxos’. Theor. Appl. Genet. 127:2635-2644. doi:10.1007/s00122-014-2404-x</Citation>
</Reference>
<Reference>
<Citation>Maccaferri, M., Ricci, A., Salvi, S., Milner, S.G., Noli, E., Martelli, P.L. 2015. A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding. Plant Biotechnol. J. 13:648-663. doi:10.1111/pbi.12288</Citation>
</Reference>
<Reference>
<Citation>Marroni, F., Pinosio, S., Zaina, G., Fogolari, F., Felice, N., Cattonaro, F. 2011. Nucleotide diversity and linkage disequilibrium in Populus nigra cinnamyl alcohol dehydrogenase (CAD4) gene. Tree Genet. Genomes 7:1011-1023. doi:10.1007/s11295-011-0391-5</Citation>
</Reference>
<Reference>
<Citation>Miedaner, T., Würschum, T., Maurer, H.P., Korzun, V., Ebmeyer, E., Reif, J.C.. 2011. Association mapping for Fusarium head blight resistance in European soft winter wheat. Mol. Breed. 28:647-655. doi:10.1007/s11032-010-9516-z</Citation>
</Reference>
<Reference>
<Citation>Oliver, R.P., Tan, K.C., Moffat, C.S.. 2016. Necrotrophic pathogens of wheat. Encyclopedia of Food Grains, 2nd ed. Academic Press, Oxford. p. 273-278. doi:10.1016/B978-0-12-394437-5.00240-0</Citation>
</Reference>
<Reference>
<Citation>Pasam, R.K., Sharma, R., Malosetti, M., vanEeuwijk, F.A., Haseneyer, G., Kilian, B. 2012. Genome-wide association studies for agronomical traits in a world wide spring barley collection. BMC Plant Biol. 12:16. doi:10.1186/1471-2229-12-16</Citation>
</Reference>
<Reference>
<Citation>Pereira, D.A., McDonald, B.A., Brunner, P.C.. 2017. Mutations in the CYP51 gene reduce DMI sensitivity in Parastagonospora nodorum populations in Europe and China. Pest Manag. Sci. 73:1503-1510. doi:10.1002/ps.4486</Citation>
</Reference>
<Reference>
<Citation>Perez-Lara, E., Semagn, K., Tran, V.A., Ciechanowska, I., Chen, H., Iqbal, M. 2017. Population structure and genomewide association analysis of resistance to disease and insensitivity to Ptr toxins in Canadian spring wheat using 90K SNP array. Crop Sci. 57:1522-1539. doi:10.2135/cropsci2016.10.0859</Citation>
</Reference>
<Reference>
<Citation>Phan, H.T.T., Rybak, K., Bertazzoni, S., Furuki, E., Dinglasan, E., Hickey, L.T. 2018. Novel sources of resistance to Septoria nodorum blotch in the Vavilov wheat collection identified by genome-wide association studies. Theor. Appl. Genet. 131:1223-1238. doi:10.1007/s00122-018-3073-y</Citation>
</Reference>
<Reference>
<Citation>Phan, H.T., Rybak, K., Furuki, E., Breen, S., Solomon, P.S., Oliver, R.P. 2016. Differential effector gene expression underpins epistasis in a plant fungal disease. Plant J. 87:343-354. doi:10.1111/tpj.13203</Citation>
</Reference>
<Reference>
<Citation>Rosielle, A.A., Brown, A.G.P.. 1980. Selection for resistance to Septoria nodorum in wheat. Euphytica 29:337-346. doi:10.1007/BF00025132</Citation>
</Reference>
<Reference>
<Citation>RStudio Team. 2016. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA.</Citation>
</Reference>
<Reference>
<Citation>Ruud, A.K., Dieseth, J.A., Lillemo, M.. 2018. Effects of three Parastagonospora nodorum necrotrophic effectors on spring wheat under Norwegian field conditions. Crop Sci. 58:159-168. doi:10.2135/cropsci2017.05.0281</Citation>
</Reference>
<Reference>
<Citation>Ruud, A.K., Lillemo, M.. 2018. Diseases affecting wheat: Septoria nodorum blotch. In: Oliver, R.P., editor, Integrated disease management of wheat and barley. Burleigh Dodds Science Publishing Ltd., Cambridge, UK. doi:10.19103/AS.2018.0039.06</Citation>
</Reference>
<Reference>
<Citation>Ruud, A.K., Windju, S., Belova, T., Friesen, T.L., Lillemo, M.. 2017. Mapping of SnTox3-Snn3 as a major determinant of field susceptibility to Septoria nodorum leaf blotch in the SHA3/CBRD Naxos population. Theor. Appl. Genet. 130:1361-1374. doi:10.1007/s00122-017-2893-5</Citation>
</Reference>
<Reference>
<Citation>Rybak, K., See, P.T., Phan, H.T., Syme, R.A., Moffat, C.S., Oliver, R.P. 2017. A functionally conserved Zn2 Cys6 binuclear cluster transcription factor class regulates necrotrophic effector gene expression and host-specific virulence of two major Pleosporales fungal pathogens of wheat. Mol. Plant Pathol. 18:420-434. doi:10.1111/mpp.12511</Citation>
</Reference>
<Reference>
<Citation>SAS Institute. 2011. SAS system for Windows. v. 9.3. SAS Inst. Inc., Cary, NC.</Citation>
</Reference>
<Reference>
<Citation>Shankar, M., Walker, E., Golzar, H., Loughman, R., Wilson, R.E., Francki, M.G.. 2008. Quantitative trait loci for seedling and adult plant resistance to Stagonospora nodorum in wheat. Phytopathology 98:886-893. doi:10.1094/PHYTO-98-8-0886</Citation>
</Reference>
<Reference>
<Citation>Shi, G., Friesen, T.L., Saini, J., Xu, S.S., Rasmussen, J.B., Faris, J.D.. 2015. The wheat gene Snn7 confers susceptibility on recognition of the Parastagonospora nodorum necrotrophic effector SnTox7. Plant Genome 8:2-10. doi:10.3835/plantgenome2015.02.0007</Citation>
</Reference>
<Reference>
<Citation>Shi, G., Zhang, Z., Friesen, T.L., Bansal, U., Cloutier, S., Wicker, T. 2016a. Marker development, saturation mapping, and high-resolution mapping of the Septoria nodorum blotch susceptibility gene Snn3-B1 in wheat. Mol. Genet. Genomics 291:107-119. doi:10.1007/s00438-015-1091-x</Citation>
</Reference>
<Reference>
<Citation>Shi, G.J., Zhang, Z.C., Friesen, T.L., Raats, D., Fahima, T., Brueggeman, R.S. 2016b. The hijacking of a receptor kinase-driven pathway by a wheat fungal pathogen leads to disease. Sci. Adv. 2:e1600822. doi:10.1126/sciadv.1600822</Citation>
</Reference>
<Reference>
<Citation>Somers, D., Isaac, P., Edwards, K.. 2004. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 109:1105-1114. doi:10.1007/s00122-004-1740-7</Citation>
</Reference>
<Reference>
<Citation>Soyer, J.L., Rouxel, T., Fudal, I.. 2015. Chromatin-based control of effector gene expression in plant-associated fungi. Curr. Opin. Plant Biol. 26:51-56. doi:10.1016/j.pbi.2015.05.025</Citation>
</Reference>
<Reference>
<Citation>Tan, K.C., Ferguson-Hunt, M., Rybak, K., Waters, O.D., Stanley, W.A., Bond, C.S. 2012. Quantitative variation in effector activity of ToxA isoforms from Stagonospora nodorum and Pyrenophora tritici-repentis. Mol. Plant Microbe Interact. 25:515-522. doi:10.1094/MPMI-10-11-0273</Citation>
</Reference>
<Reference>
<Citation>Tan, K.C., Phan, H.T., Rybak, K., John, E., Chooi, Y.H., Solomon, P.S. 2015. Functional redundancy of necrotrophic effectors: Consequences for exploitation for breeding. Front. Plant Sci. 6:501. doi:10.3389/fpls.2015.00501</Citation>
</Reference>
<Reference>
<Citation>Thornsberry, J.M., Goodman, M.M., Doebley, J., Kresovich, S., Nielsen, D., Buckler, E.S.. 2001. Dwarf8 polymorphisms associate with variation in flowering time. Nat. Genet. 28:286-289. doi:10.1038/90135</Citation>
</Reference>
<Reference>
<Citation>Tommasini, L., Schnurbusch, T., Fossati, D., Mascher, F., Keller, B.. 2007. Association mapping of Stagonospora nodorum blotch resistance in modern European winter wheat varieties. Theor. Appl. Genet. 115:697-708. doi:10.1007/s00122-007-0601-6</Citation>
</Reference>
<Reference>
<Citation>Turner, S.D. 2014. qqman: An R package for visualizing GWAS results using Q-Q and Manhattan plots. bioRxiv.doi:10.1101/005165</Citation>
</Reference>
<Reference>
<Citation>Wang, S., Wong, D., Forrest, K., Allen, A., Chao, S., Huang, B.E. 2014. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol. J. 12:787-796. doi:10.1111/pbi.12183</Citation>
</Reference>
<Reference>
<Citation>Waters, O.D., Lichtenzveig, J., Rybak, K., Friesen, T.L., Oliver, R.P.. 2011. Prevalence and importance of sensitivity to the Stagonospora nodorum necrotrophic effector SnTox3 in current Western Australian wheat cultivars. Crop Pasture Sci. 62:556-562. doi:10.1071/CP11004</Citation>
</Reference>
<Reference>
<Citation>Wicki, W., Winzeler, M., Schmid, J.E., Stamp, P., Messmer, M.. 1999. Inheritance of resistance to leaf and glume blotch caused by Septoria nodorum Berk. in winter wheat. Theor. Appl. Genet. 99:1265-1272. doi:10.1007/s001220051332</Citation>
</Reference>
<Reference>
<Citation>Zadoks, J.C., Chang, T.T., Konzak, C.F.. 1974. A decimal code for the growth stages of cereals. Weed Res. 14:415-421. doi:10.1111/j.1365-3180.1974.tb01084.x</Citation>
</Reference>
<Reference>
<Citation>Zhang, Z., Friesen, T.L., Simons, K.J., Xu, S.S., Faris, J.D.. 2009. Development, identification, and validation of markers for marker-assisted selection against the Stagonospora nodorum toxin sensitivity genes Tsn1 and Snn2 in wheat. Mol. Breed. 23:35-49. doi:10.1007/s11032-008-9211-5</Citation>
</Reference>
<Reference>
<Citation>Zhang, Z.C., Friesen, T.L., Xu, S.S., Shi, G.J., Liu, Z.H., Rasmussen, J.B. 2011. Two putatively homoeologous wheat genes mediate recognition of SnTox3 to confer effector-triggered susceptibility to Stagonospora nodorum. Plant J. 65:27-38. doi:10.1111/j.1365-313X.2010.04407.x</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>Danemark</li>
<li>Norvège</li>
</country>
</list>
<tree>
<country name="Norvège">
<noRegion>
<name sortKey="Ruud, Anja Karine" sort="Ruud, Anja Karine" uniqKey="Ruud A" first="Anja Karine" last="Ruud">Anja Karine Ruud</name>
</noRegion>
<name sortKey="Dieseth, Jon Arne" sort="Dieseth, Jon Arne" uniqKey="Dieseth J" first="Jon Arne" last="Dieseth">Jon Arne Dieseth</name>
<name sortKey="Ficke, Andrea" sort="Ficke, Andrea" uniqKey="Ficke A" first="Andrea" last="Ficke">Andrea Ficke</name>
<name sortKey="Lillemo, Morten" sort="Lillemo, Morten" uniqKey="Lillemo M" first="Morten" last="Lillemo">Morten Lillemo</name>
</country>
<country name="Danemark">
<noRegion>
<name sortKey="Ruud, Anja Karine" sort="Ruud, Anja Karine" uniqKey="Ruud A" first="Anja Karine" last="Ruud">Anja Karine Ruud</name>
</noRegion>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Furuki, Eiko" sort="Furuki, Eiko" uniqKey="Furuki E" first="Eiko" last="Furuki">Eiko Furuki</name>
</noRegion>
<name sortKey="Oliver, Richard P" sort="Oliver, Richard P" uniqKey="Oliver R" first="Richard P" last="Oliver">Richard P. Oliver</name>
<name sortKey="Phan, Huyen T T" sort="Phan, Huyen T T" uniqKey="Phan H" first="Huyen T T" last="Phan">Huyen T T. Phan</name>
<name sortKey="Tan, Kar Chun" sort="Tan, Kar Chun" uniqKey="Tan K" first="Kar-Chun" last="Tan">Kar-Chun Tan</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000249 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000249 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33016591
   |texte=   Genome-Wide Association Mapping of Resistance to Septoria Nodorum Leaf Blotch in a Nordic Spring Wheat Collection.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33016591" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020